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Figure: Till et al.:
“Elastic Stability of
Cosserat Rods and

Figure: Campa et al.:

) Figure: Black et al.: “A 2 Dof Continuum ;
Figure: Altuzarra et “Parallel Continuum Parallel Robot for Pick ~ Parallel Continuum
al.: “Kinematic Robots” (2018) & Place Collaborative Robots” (2017)
Characteristics of Tasks” (2019)

Parallel Continuum
Mechanisms” (2019)

Kinematics, dynamics, control, design are very dependent on how the slender structure's large

displacements and deformations are described.
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Configuration of the Rod

Modeling

Consider the slender structure to be a A frame i.e., a local orthonormal basis field
framed curve of length L. It is represented describes the evolution of the orientation of
by the line of its mass centroids, its the cross-sections

centerline, a spatial curve
R: [0,L] — SO(3),
R(s) = [di(s), da(s), ds(s)] € R¥*3,
R"R=1,
det R =1Vs € [0, L]

p:[0,L] — R3.
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Modeling
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Parametrization of the Rotation
Modeling

Commonly, Cosserad rod theory use quaternions for the parametrization of the rotation matrix,
though other options exist i.e., Euler angles, rotation vectors, or axis angle.
Let

q1

q= aqz — |:qs:| c ]R4,
as qy
g4

be a proper quaternion i.e., ||g|| = 1. Its respective rotation matrix reads

B+ - —a 2(ee—qa)  2(920 + q19s)
R(q)=| 2qe+aqias) a5 —a+a3—a; 2,(039a— q1q2) | = [d1, da, d3] .
2(g294 — q193) 2(pa+qe) G-¢G-a+a
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Kinematics and Constitutive Equations

Modeling

Linear strain is defined by the vector

e=R"p —&,.

Linear stresses then read

o= K (e —ep).

Internal forces of the rod read

n=Ro=RKs(ec—e).

6 /39

Angular strain is given as

(d3, d3)
K= <dgv dl)
(d, d2)

Angular stresses then read

x = Ker (kK — Ko) .

Internal moments of the rod read

m=Rx=RKs(k—Ko).



Boundary Conditions

Modeling

Usually, the rod is part of a multibody structure and we are interested in the rods constrained
kinematic response to the external bodies.

Dirichlet-type condition enforces position Neumann-type condition enforces force and
and orientation equilibrium at the boundary: moment equilibrium at the boundary:
p—p=0, s=0,L, n—n=0, s=0,L,
qg—q=0, s=0,L. m—-—m=0, s=0,L,
<qaq>_1:07 S:07L7
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Cosserat Model
Modeling

Equilibrium of linear momentum reads
n' +h=0Vse]o,L[,
Equilibrium of angular momentum reads
m +p' xn+m=0Vse]0,L[,

Given an initial condition of the rod

8 /39

The Cosserat model for flexible slender
strutures reads

p = R(KSE—lRT n+ eo>
0

q = R(KBT_IRTm+I€0) ©q,
n=—n,
m=—p' xn-m.



Section 3



Solving
oe

Overview
Solving

In general, the evolution of the Cosserat rod position and orientation is a coupled differential
equation in R'3 unknowns

y = f(y), y'=[pq",n",m].

Due to the coupled nature e.g., m’ = m’(p’, n), analytical solutions are seldomly obtained.
Other methods must be found to obtain the solution for a given initial condition or boundary
conditions:

1. Numerical integration

2. Discretization
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Numerical Integration
Solving

® Numerical integration is cumbersome and prone to instabilities due to the stiff system
0 High elastic modulus vs. small moment of area

With combined boundary conditions e.g., positon and orientation at s = 0 and forces and
moments at s = L, numerical integration becomes even more cumbersome

0 Consider problem as BVP rather than IVP then

When considering dynamics and optimization, numerical integration is impractical

m QOther quantities of interest are not easily obtainable e.g., linearization, mass-matrix,
stiffness, etc.
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Discretization: The CoRdE Approach

Solving

Let us discretize the centerline p as a chain of N nodes p;, the quaternions as a chain of N — 1
nodes q;. The discrete spatial derivative y’ (y = p or y = q) reads

y§ _ Yit1 — Yi ‘
||.VI+1 - y,-||

With high stretch stiffness, it can be approximated to be

1 1
P§ ~ —(Piy1— Pi), q§ ~ —(qiv1— qi)-
L; L;
In the end, we obtain a high-dimensional system of nonlinear equations in p;, i=1,..., N
and q;, j=1,..., N —1. It provides a linear approximation of the rod’s centerline and

orientation, particularly a linear approximation between nodes.
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Discretization: The Shape Function Approach
Solving

Let us discretize the centerline position and quaternion using (for now) n unknown shape
functions Mi(s), i=1,...,n

P(9) = > Ns) pi = TI(5) P a(s) = > N(s) a; = TI(s) P

This is similar to a modal decomposition or linear coordinate transformation where we introduce
new generalized coordinates P, for the sought-for physical properties.

We have not made any assumptions as to what II(u) shall look like, so let us take a look at
(one particular) literature.
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Introduction

Isogeometric Analysis

Isogeometric Analysis Hughes, Cottrell, and Bazilevs

Based on the isogeometric philosophy, the solution space for dependent variables is represented
in terms of the same functions which represent geometry [5].

= A new method for the analysis of problems governed by partial differential equations e.g.,
solids, structures, and fluids.

= Many features in common with finite element method and some with meshless methods
® Purely based on geometric propertyes and inspired from CAD

m Approach is based on NURBS (Non-Uniform Rational B-Splines), a standard technology in
CAD systems
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B-Splines
Isogeometric Analysis

A knot vector is a set of coordinates in the parametric space

== {&. & nprls

which the i-th knot & € R, p is the polynomial order (p = d + 1), and n is the number of bases

functions.
B-Splines are defined recursively starting
with piecewise constants (p = 0): S e
| 1
N: (u) _ 1 if&<u<éy, i : Ril
"o 0 otherwise . 05 I ! =
: : ==~ R3lo
B
| i
b




Isogeometric Analysis
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B-Splines

Isogeometric Analysis

For p=1,2,..., we have

u—¢; i —u
Nip(u) = 25 Ny () + 2 ()
£l+p &i

Sitpr1 — i1
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B-Splines

Isogeometric Analysis

A few important properties of B-Splines:
1. Basis functions of order p are p — 1 continuous

2. B-Splines constitute a partition of unity i.e., i Nip(u) = 1.
i=1
3. Each N;, has only compact support and is contained in the interval [§;, it p+1].
4. Each basis function is non-negative consequently all coefficients of the mass matrix
computed from B-Splines are greater than or equal to zero.
5. Basis functions are interpolating at the ends of the parametric space [£1, €ntp+1] but not, in
general, at the interior knots (where they are, in fact, approximating).
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Curves: B-Spline

Isogeometric Analysis

B-Spline curves in R™ are a linear
combination of B-Spline basis functions

C(U) = Z N,-’p(u) P,' .

Table: Control points of sample curve
with p = 3.

i 1 2 3 4 5 6

P, 0 0.3 03 05 09 038
P, 0 025 07 08 03 1
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Curves: NURBS

Isogeometric Analysis
NURBS (Non-Uniform Rational B-Splines) are a projective transformation of B-Spline curves

Z Nl,p Wi p. —— B-Spline
” — NURBS

K
i=1 2:1 N; p(u)w;
J:

Table: Control points of sample curves.

i1 2 3 4 5 6

P, 0 03 03 05 09 08

P, 0 025 07 08 03 1

w, 11 1 11 1

P, 0O 15 03 05 09 08

P, 0 125 07 08 03 1 |
w, 1 5 1 11 1
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00e0

Curves: Properties

Isogeometric Analysis

A few additional properties of B-Spline and NURBS curves

1. Polynomial order may be increased

. . - 1 N
(p-refinement) without changing the RN
geometry of parametrization P S

. — . 0.8 /

2. Affine transformations in physical space K \\\
are obtained by applying the /,’_ __________ ¥
transformation to the control points 0.6 - ! \\
(NURBS possess affine covariance). / \

0.4
0.2}

Original p = 2
- - - p-refined p =3

0 0.2 0.4 0.6 0.8 1
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Curves: Approximation of circle

Isogeometric Analysis

Exact circle

—— B-Splined =2, n=6
—— B-Splined =3, n=7
——— Discrete n = 8.




Isogeometric Analysis
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|sogeometric Rod

Isogeometric Analysis

Let us discretize the centerline position and quaternion using n NURBS as shape
functions My(s), i=1,...,m

P(9) = > M(s) pi = TI(5) P, . a(s) = Y0 M) 4 = TI() Py

Strain measures Internal forces Equilibrium equations
e=R'p —2&,, n=Ro=RKy(ec—¢ep), n+hr=0,
(d, ds) m=Rx=RKy(k— Kgp) . m+p' xnt+m=0.
k= |(d3 d1)
(dy, dy)

Substituting the discrete centerline position and quaternion into the kinematics simply
transforms into another solution space. There is no gain from this, so we want to also solve the
equilibrium equations in a different way.
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Derivation

Collocation

Let us construct a one-step method of given order of
accuracy for the first time step interval [to, to + h].
Let 0< < < -+ <cs <1 be distinct nodes on
the unit interval. The collocation

polynomial u(t) € R" is a polynomial of degree s
satisfying

u(to) = yo
U(to+cih)=fu(to+ch) i=1,...,s,

and the numerical solution of the collocation method
over the interval [to, to + h] is given by y1 = u(ty + h).

O = = — N - - - -

1
1

1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
|

c

|
to

Rl

1 3t =to+ h
We construct a polynomial that passes through yo and agrees with the ODE at s nodes
on [to, to + h].
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Derivation

Collocation
Let F;, i=1,...,s, be the values of the (as of yet
undetermined) interpolating polynomial at the nodes 1k

Fi=u(to+ ¢ h).

(NI

We use Lagrange’s interpolation formula to define the

polynomial u/(t) passing through these points <
— T X — ¢ 0
Fil; 2 li(x) = L i
z (52) wo-T12=2
j=1
i h(x) h(x) ()
Integrating over the intervals [0 ci gives 0 02 o7 o= IR
u(to+cih)=y+h Z F; / (x) dx. x/(+)
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A Simple Example
Collocation
For illustration, let us solve the IVP on the interval t € [0, 1]

y =3¢, y(0) =1.
The exact solution is
, — (1) |
yt)=1+1, —
2 -
. —y/(t=05)]
which we want to approximate with the first-degree i

polynomial
y(t)=a+art. 1L
Since y(0) = 1, ag = 1, substituting gives a; = 3 t2.

Requiring the collocation satisfied at t = 0.5
gives a; = 0.75 yields

y(t) =14+0.75¢. 0 0.2 0ﬁ4 0.5 0ﬁ6 0ﬁ8 i
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A More Detailed Example

Collocation

Let our IVP be given

y' = 1.75 exp(1.75 1),

y(0)=15.

Our collocation polynomial shall be

u(t):ao+alt+azt2+--'~|—adtd.

d ci EN a1 a as EN as
1 lin 1.50 4.20 — — — —
LP 1.50 4.20 —_ — — —
5 lin 1.50 0.65 3.73 —_ — —
LP 1.50 0.91 3.83 — — —
3 lin 1.50 2.04 0.53 2.18 — —
LP 1.50 1.91 0.62 2.23 — —
4 lin 1.50 1.70 1.80 0.29 0.95 —_
LP 1.50 1.73 1.73 0.32 0.97 —
5 lin 1.50 1.76 1.48 1.06 0.13 0.33
LP 1.50 1.75 1.50 1.03 0.13 0.34

Degree d =1
10 — B
- —~—humerical \'\\ /
/—— evenly spaced \ /
811 roots of Legendre poly b

| |
0.4 0.6
25 / 39

0.8
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Generic First-Order ODE Collocation

Collocation

Assume we want to find the solution for
y' =f(t,y), y(0) = yo.

on the interval t € [0, 1] with the collocation
polynomial

d
ut) =Y at'=[Lt,... .t a=1Ta.
i=0

In addition, we have

J()=1[0,1,t,....dt" T a=7"a,

Collocation method requires satisfying

U(O) = y(O) =)0,
u'(to + C,') = f(to + ¢, U(tO + Ci)) »

at all inner collocation
points0< g < - <<+ <cg <1
Substituting v’ = 7' « yields

TTT(to) Yo
" (to + 1) f(to + c1, u(to + c1))
. o = .

T'T(to + Cd) f(to + cq, u(to + Cd))

which are 1 + d equations for the d + 1
unknowns of u(t), respectively of c.
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How to Use the Collocation Method

Collocation

To use the collocation method, a few facts To solve the ODE
have to be considered

! —
® collocation function must satisfy the y =1(ty), y(to) = yo,

initial value remember that the collocation function u(t)
m collocation points must be well-chosen must satisfy
polynomial roots of shifted Legendre
polynomial u(to) = yo -
splines knots of Greville abscissae U (to + ¢ h) = f(to + ¢; h,u(to + c; h)),
® Choose between global or piecewise
collocation at all inner collocation points ty + c; h.

The resulting system of (non)linear

0 Piecewise reduces degree of local
equations can be solved with

polynomial
U Continuity of collocation function Newton-Raphson, Levenberg-Marquardt,
between intervals must be satisfied etc.
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Collocation Method vs. Numerical Integrators

Collocation Method

1.
2.

Requires more preparative work

Continuous solution of the IVP even
between integration points

Interpolates the solution between t,
and tp41

4. Readily applicable to higher-order ODE

. In principle applicable to any ODE/IVP

Transforms differential equation(s) into
algebraic equation(s) (Can allow to
define Jacobian in analytical form)

Comes in global and piecewise
collocation (depending on collocation
function)

Numerical Integrators

1.
2.

Only needs the ODE/IVP

Discretizes solution snap shots at
integration points
Extrapolates solution from t, to t,+1

. Needs state-reduction into first-order

ODE
Handling of stiff ODEs is tricky
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Isogeometric Collocated Rod
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Overview

Isogeometric Collocated Rod

Remember we discretized the centerline position and quaternion using p-th order NURBS as
shape functions ;(s)

p(s) = Z Ni(s) p; = TI(s) P, , q(s) = Z Mi(s) q; = T(s) Py .

Weeger, Yeung, and Dunn will rigorously substitute these into the kinematics and equilibrium
equations, then use the collocation method to solve the resulting equilibrium ODE [6].

Strain measures Internal forces Equilibrium equations
e=R'p —2&,, n=Ro=RKs(ec— &), n+hn=0,
(d}, d3) m=Rx=RKy(k— Kp) . m+p xn+m=0.
k= |(d3 d1)
(dy, d>)



Isogeometric Collocated Rod
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Strong Collocation of the Equilibrium

Isogeometric Collocated Rod

Application of collocation of the strong form to the equilibrium equations requires them to be
evaluated at the collocation points 1;, i = 1, ..., n. For internal collocation points T,
i=2,...,n—1, this yields

e (r;) = n'(m) + h(r;) = O,
en(r;) = m'(m) + p'(1;) x n(r;) + () = O,
eq(m) = (q(7:), q(r;)) —1=0.

At the boundariesi.e., 4 =0 and 7, = 1, we have

Dirichlet-type conditions Neumann-type conditions
en(ri) = n(r) — n(7;) = 0, ep(7i) = p(7i) = P(1;) = O,
em(T,') = ITI(T,') — m(T,') = (D, eq(T,') = Q(T,') — (_](T,') =0.

eq=(q(71),q(r;)) —1=0.
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Isogeometric Collocated Rod
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Strong Collocation of the Equilibrium

Isogeometric Collocated Rod

With internal forces and moments
n=Ro =RKg(e— &), m=Rx =R Kg(k — Kg),
their spatial derivatives read

n=R o+ Ro’
= R Ky(e — 0) + R Kse (€' — €;)
~ R Ke(RTP' — & —c0) + RKe (R p' + R p" ~ ),
m+p xn=R x+Rx'"+p' x(Ro)
=R Kg:(k — Ko) + R Kgr(K' — ko) +p' x (RKi:(R" p' — &, — &0)),

which we can readily plug into the strong form of the collocation method and solve for the
unknown control points P, and Pyg.
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Mixed Isogeometric Collocation Method

Isogeometric Collocated Rod

Due to shear locking (decreasing thickness of a beam), the convergence of the numerical
discretization method deteriorates. Thus, a mixed collocation method was developed.

In addition to using NURBS for centerline position p and quaternions g, the internal forces and
internal moments are also being discretized likewise:

:ZI'I,-(s)n,-:H(s)P,,, Zn m; =1II(s) Pm ,

This yields the collocated equations at internal collocation points 7;, i =2,...,n—1
en(r;) = nl(1:) + A(r;)) = O,
em(7i) = my(1:) + pa(7i) x ny(m;) + (7,
eq(7i) = (qu(71), qu(7;)) —1 =0,
e, =n,(r)— (Ro)(m)=0,
ex = my(7) — (Rx)(ri) = O
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Isogeometric Collocated Rod
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Primal vs. Mixed Collocation Method [6]

Isogeometric Collocated Rod

1071 P 10!
SIS
N
N
103 F SN s 1 107%
= So RN =
g NN\ g
§ 105 |——p=3 NS s 5 10"
5 ——p=4 N - &
& —p=5 N i &
T 07| p=6 N < s z 107
) ——p=T7 AN N 3
g ——p=38 AN g 9
S ) = | g
CHR Ul o IO N 3 10
s ce? N B
1071 = 10-11
- ,,Cl*b \\\
R S e | 10713
Il Il Il Il Il Il
20 21 22 23 24 25 26 20 21 22 23 24 25 25

number of elements (knot spans) ¢

number of elements (knot spans) £

Figure: Thickness t = 0.1, mixed
formulation (pq, a4, Ny, My).

Figure: Thickness t = 0.1, primal
formulation (ps, q4).
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Isogeometric Collocated Rod

Primal vs. Mixed Collocation Method [6]

Isogeometric Collocated Rod

10
10-3

k=l K|
: :
= -
:
z &
S < 1077
s s
g g
?‘IJ ?.’ 107*
X X

10711 [ 0274 \\ - 10711

N
X N
e o A 8 10-1%
Il Il Il Il Il
20 21 22 23 24 25 26
number of elements (knot spans) £ number of elements (knot spans) ¢

Figure: Thickness t = 0.01, primal Figure: Thickness t = 0.01, mixed
formulation (ps, q4). formulation (pq, a4, Ny, My).

34{39



Isogeometric Collocated Rod
(]

Helical Spring Displacement [6]

Isogeometric Collocated Rod

——-u, (=32
0.2 |--= u, (£=32-8)

endpoint displacements u =r —rg

---u, (0=32-8)
| e (0=132-4) |
0311 .. Uy ([: 32 4)
...... u, (0=32-4)
—0.4 L L ! I | !

| | I
0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5
force magnitude

Figure: Initial configuration of Figure: End-point displacement when subject to different end
helical spring and roll-up. forces for different basis functions.
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Today | Learned

® We can describe the deformation field of a Cosserat rod using NURBS as basis/shape
functions

= With isogeometric analysis and collocation method, the ODE is transformed to a system of
nonlinear algebraic equations

® These methods have been carefully studied before and validated in numerical applications

® The presented method is a promising alternative to existing discretization methods for
Cosserat rods

36{39



References
[e]

References

(1]

2]

(3]

(4]

O. Altuzarra, D. Caballero, Q. Zhang, and F. J. Campa, "Kinematic characteristics of parallel
continuum mechanisms,” in Advances in Robot Kinematics 2018, ser. Springer Proceedings in
Advanced Robotics, J. Lenarcic and V. Parenti-Castelli, Eds., vol. 8, Cham: Springer International
Publishing, 2019, pp. 293-301, 1SBN: 978-3-319-93187-6. DOI: 10.1007/978-3-319-93188-3_34.

C. B. Black, J. Till, and D. C. Rucker, “Parallel continuum robots, Modeling, analysis, and
actuation-based force sensing,” |[EEE Transactions on Robotics, vol. 34, no. 1, pp. 29-47, Feb. 1,
2018, 18SN: 1552-3098. DOI: 10.1109/TR0O.2017.2753829.

F. J. Campa, M. Diez, D. Diaz-Caneja, and O. Altuzarra, “A 2 dof continuum parallel robot for
pick & place collaborative tasks,” in Advances in Mechanism and Machine Science,

ser. Mechanisms and Machine Science, T. Uhl, Ed., vol. 73, Cham: Springer International
Publishing, 2019, pp. 1979-1988, 1SBN: 978-3-030-20130-2. DOI:
10.1007/978-3-030-20131-9_196.

J. Till and D. C. Rucker, “Elastic Stability of Cosserat Rods and Parallel Continuum Robots,”
IEEE Transactions on Robotics, vol. 33, no. 3, pp. 718-733, 2017, 1ssN: 1552-3098. DOTI:
10.1109/TR0.2017.2664879.

37{39


https://doi.org/10.1007/978-3-319-93188-3_34
https://doi.org/10.1109/TRO.2017.2753829
https://doi.org/10.1007/978-3-030-20131-9_196
https://doi.org/10.1109/TRO.2017.2664879

References
[e]

References

[5] T.J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis, Cad, finite elements,
nurbs, exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and
Engineering, vol. 194, no. 39, pp. 4135-4195, 2005, 1SSN: 0045-7825. DOLI:
10.1016/j.cma.2004.10.008.

[6] O. Weeger, S.-K. Yeung, and M. L. Dunn, “Isogeometric collocation methods for Cosserat rods
and rod structures,” Computer Methods in Applied Mechanics and Engineering, vol. 316,
pp. 100-122, 2017, PII: S004578251630336X, 1SSN: 0045-7825. DOLI:
10.1016/j.cma.2016.05.009. (visited on 05/20/2020).

38{39


https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2016.05.009

References

EOF

39




	Problem Statement
	Modeling
	Solving
	Numerical Integration
	Discretization

	Isogeometric Analysis
	Introduction
	B-Splines
	Curves
	Isogeometric Rod

	Collocation
	Derivation
	A Simple Example
	A More Detailed Example
	Generic First-Order ODE Collocation
	How to Use the Collocation Method
	Collocation Method vs. Numerical Integrators

	Isogeometric Collocated Rod
	Overview
	Strong Collocation of the Equilibrium
	Mixed Isogeometric Collocation Method
	Primal vs. Mixed Collocation Method
	Helical Spring Displacement

	Closing
	References

	3.EndRight: 
	3.StepRight: 
	3.StepLeft: 
	3.EndLeft: 
	anm3: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 


